

- Anticholinergic burden ACB:
- Sedation
- Dry mouth
- Constipation
- Urinary Retention
- Blurred vision
- Postural hypotension
- Cognitive decline
- Mortality

Anticholinergic Drug Exposure and the Risk of Dementia

JAMA Intern Med. 2019;179(8):1084-1093

- The study evaluated whether exposure to anticholinergic drugs was associated with dementia risk in 58 769 pts. with dementia and 225 574 controls >55 years
- Information on prescriptions for 56 drugs with strong anticholinergic properties was used to calculate measures of cumulative anticholinergic drug exposure

Anticholinergic Drug Exposure and the Risk of Dementia JAMA Intern Med. 2019;179(8):1084-1093

There were significant increases in dementia risk for:

- Anticholinergic antidepressants 1.29
- Antiparkinsons drugs 1.52
- Antipsychotics 1.70
- Bladder antimuscarinic drugs 1.65
- Antiepileptic drugs 1.39

Table 3. Numbers of Case Patients and Controls Prescribed Different Types of Anticholinergic Drugs in the 1 to 11 Years Before the Index Date

	Case Patients (n = 58 769)					Controls (n = 225 574)			
	No. (%)		Median (IQR)		No. (%)		Median (IQR)		
Anticholinergic Drug Group	No. With Prescriptions	Total Prescriptions	No. of Prescriptions ^a	Total Dose ^{a,b}	No. With Prescriptions	Total Prescriptions	No. of Prescriptions ^a	Total Dose ^{a,b}	
Any anticholinergic drugs	33 253 (56.6)	952 263 (100)	6 (2-34)	214 (42-1531)	115 096 (51.0)	2 504 790 (100)	4 (1-22)	136 (30-982)	
Antihistamines	6457 (11.0)	34 151 (3.6)	1 (1-3)	30 (23-84)	23 145 (10.3)	117 271 (4.7)	1 (1-3)	30 (27-84)	
Antidepressants	15 938 (27.1)	427 489 (44.9)	6 (1-35)	280 (62-1876)	52 560 (23.3)	1 141 284 (45.6)	4 (1-25)	196 (56-1350)	
Antivertigo/ antiemetic drugs	13 969 (23.8)	79 673 (8.4)	2 (1-4)	20 (9-56)	48 990 (21.7)	249 214 (9.9)	1 (1-3)	19 (9-50)	
Antiparkinson drugs	292 (0.5)	16 498 (1.7)	31 (3-91)	879 (105-3274)	527 (0.2)	25 412 (1.0)	22 (2-73)	541 (48-2333)	
Antipsychotic drugs	1812 (3.1)	69 895 (7.3)	11 (2-51)	756 (119-3751)	3400 (1.5)	109 180 (4.4)	8 (1-46)	490 (84-2894)	
Bladder antimuscarinic drugs	6864 (11.7)	170 064 (17.9)	8 (2-32)	330 (60-1461)	18 778 (8.3)	362 677 (14.5)	5 (1-23)	198 (56-1120)	
Skeletal muscle relaxants	429 (0.7)	1361 (0.1)	1 (1-2)	23 (16-45)	1568 (0.7)	5202 (0.2)	1 (1-2)	24 (17-42)	
Gastrointestinal antispasmodic drugs	4036 (6.9)	29 320 (3.1)	1 (1-4)	30 (13-120)	15 481 (6.9)	101 268 (4.0)	1 (1-3)	28 (13-112)	
Antiarrhythmic drugs	49 (0.1)	2569 (0.3)	31 (5-88)	882 (175-2345)	172 (0.1)	8142 (0.3)	37 (5-77)	1148 (150-2436)	
Antiepileptic drugs	1411 (2.4)	41 360 (4.3)	4 (1-39)	153 (42-2240)	4492 (2.0)	97 180 (3.9)	2 (1-20)	80 (30-970)	
Antimuscarinic bronchodilator drugs	3878 (6.6)	79 883 (8.4)	8 (2-29)	300 (60-1330)	13 996 (6.2)	287 960 (11.5)	8 (2-29)	330 (67-1333)	

Abbreviations: IQR, interquartile range; TSDD, total standardized daily dose.

 $^{^{\}rm a}$ In patients with 1 or more prescriptions for drug.

^b Cumulative dose calculated using TSDDs in exposure window.

Anticholinergic drugs prescribed in 1 to 11 year

Antidepressants

- Amitriptyline 10 mg 75 mg
- Clomipramine25 mg 100 mg
- Dosulepin 75 mg 150 mg
- Doxepin 10 mg 100 mg
- Imipramine 10 mg 100 mg
- Lofepramine 70 mg 105 mg
- Nortiptyline 10 mg 75 mg
- Paroxetine 10 mg 20 mg
- Trimipramine 50 mg 150 mg

Antiepileptics Carbamazepine

Anti-nausea/vertigo

Cyclizine

Prochlorpromazime

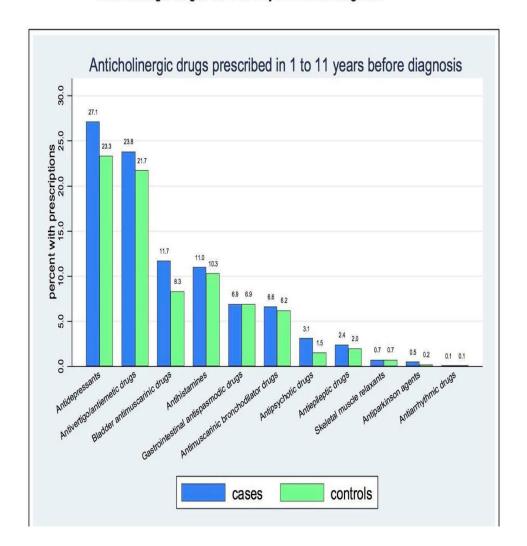
Promethazine

Levomepromazine

Cyproheptadine

Antipsychocis

Olanzapine


Quetiapine

Thioridazine

Pericyazine

eFigure 2 Proportions of cases and controls prescribed different types of anticholinergic drug in the 1 to 11 years before diagnosis

Incontinence drugs

- Oxybutinin
- Darifenacin
- Solifenacin
- Tropsium
- Tolteridone
- Propiverin

Ipratropium Glycopyrronium

Start typing...

曲

Score:

Medicine:

Brands:

Start typing...

Score:

Medicine:

Brands:

Start typing...

Score:

Medicine:

Brands:

+ Add new medicine

6 STEPS FOR SAF≣ PRESCRIBING

antipsychotics and benzodiazepines in residential aged care.

Best practice for managing the behaviours and psychological symptoms of dementia uses a person-centred approach.

Acquired to be and benefit and resolves a very limited rule in this gree. They arry work for a email percentage of people with apwolfe indications. They aims increase the risk of patient harm.

Fyou're theking of prescribing these-medicines to manage the behaviours. and people longical symptoms of doments, lukew home it stops.

Family and frontline workers know the person best.

Talk to Trent to understand the person's behaviours. triggers, Nece and deliver.

Used the owner lands

needs. Chick the

nonvious plan to

uncleretured their

behavours are

documented

perfectly and

What triggers the behaviour?

Could the chellenging behasiour be caused by pain, infection, reservery, depressions, art event or record Change?

What other tretterweinfagning have been Er te-cit

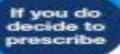
Use other strategies

For enumpio, physical activity, reseasurance. Private Parago, Whist worked? What sheet KINGS YOUTSY'S

Hisp fronting workers and families with problem solving to understand and manager. Defrancours:

Prescribing antiquetholics or becomes appears should be the exception, not the norm.

5.


Start low and go slaw

Discuss the risks and benefits with the person/their decision matter.

Cart their informed connect before **DESCRIPTION**

informed

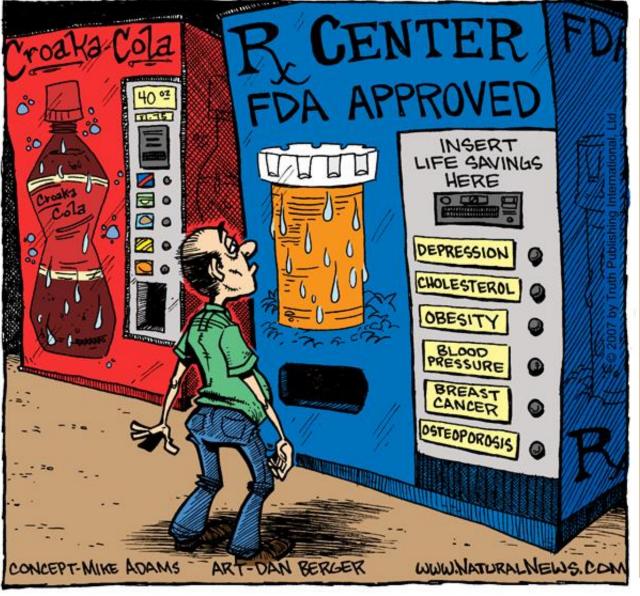
Start on a low done. Measure the response against the documented behaviours.

Increase very gradually financial. If Promi is no

reprovement in 4 works, depresent will

Pflann as **CHARGOSAF**

measuring the response.


> Symptomic part change. so the result for medication cart decishenge.

Ty reducing the otherwise partition on Service. If the periphore don't roturn, depateachtre.

COUNTERTHINK

WHAT THE DRUG COMPANIES REALLY WANT

Psychotropics Symptoms control / Comfort

Antipsychotics Anxiolytics Hypnotics Antidepressants Anti-Epileptics Opioids Cannabinoids Orexin Inhibitors Stimulants

The mainstay of the treatment of mood and behavioural disturbances is non-pharmacological Psychotropic drugs should be reviewed after no more than 3 months and the dose reduced and stopped when possible, with the goal of using the lowest effective dose for the shortest period of time.

Recommendations from Australian and New Zealand Society for Geriatric

Medicine

- 1.Do not use antipsychotics as the first choice to treat behavioural and psychological symptoms of dementia.
- 2.Do not prescribe benzodiazepines or other sedativehypnotics to older adults as first choice for insomnia, agitation or delirium.
- 4.Do not prescribe medication without conducting a drug regimen review.
- 5.Do not use physical restraints to manage behavioural symptoms of hospitalized older adults with delirium except as a last resort.

15G. Chemical restraint to be used only as a last resort

- an approved health practitioner who has day-to-day knowledge of the consumer has:
- (i) assessed the consumer as **posing a risk of harm** to the consumer or any other person, and as requiring the restraint; and
- (ii) documented the assessment, unless the use of the restraint is necessary in an emergency; and
- (b) alternatives to restraint have been used for the consumer to the extent possible; and
- (c) the alternatives to restraint that have been considered or used have been documented, unless the use of the restraint is necessary in an emergency; and
- (d) the restraint is the least restrictive form of restraint possible; and
- (e) the approved provider has the informed consent of the consumer or the consumer's representative to the use of the restraint, unless the use of the restraint is necessary in an emergency.

Chemical Restraint Legislation

The use of medication or a chemical substance for the purpose of influencing a person's behaviour

other than medication prescribed for the treatment of, or to enable treatment of,

a diagnosed mental disorder,

a physical illness or a physical condition".

Rapid Tranquilisation

- the risks to either the patient or to other people;
- the consequences of potentially escalating violence;
- the risks of potential adverse effects of medicines

GABAminergic Neuro-inhibition

Hypothalamus Spinal **GABA Hippocampus** Cord **GABA** Benzodiazepines Cerebral cortex Flumazenil Extracellular Zolpidem Substantia Nigra cerebellum Sedating High potency Benzos Alprazolam Lorazepam Clonazepam Barbiturates Intracellular Anxiolytic Low Potency Benzos Ion channel Oxazepam **Temazepam** Chlordiazepoxide Source: Bertram G. Katzung, Todd W. Vanderah:

> Basic & Clinical Pharmacology, Fifteenth Edition Copyright © McGraw-Hill Education. All rights reserved.

Benzodiazepines for treatment of patients with delirium excluding ICU

Trial One: 58pts end stage Cancer 64yrs.old

(2017) Lorazepam 0.5-3 mg VS Haloperidol 0.5-2 mg

Trial Two: 30 pts end stage AIDS 39.6yrs old

(1996) Haloperidol VS Lorazepam VS Chlorpromazine

Side effects: Oversedation-confusion-ataxia

Efficacy and Tolerability of Benzodiazepines for the Treatment of Behavioral and Psychological Symptoms of Dementia:

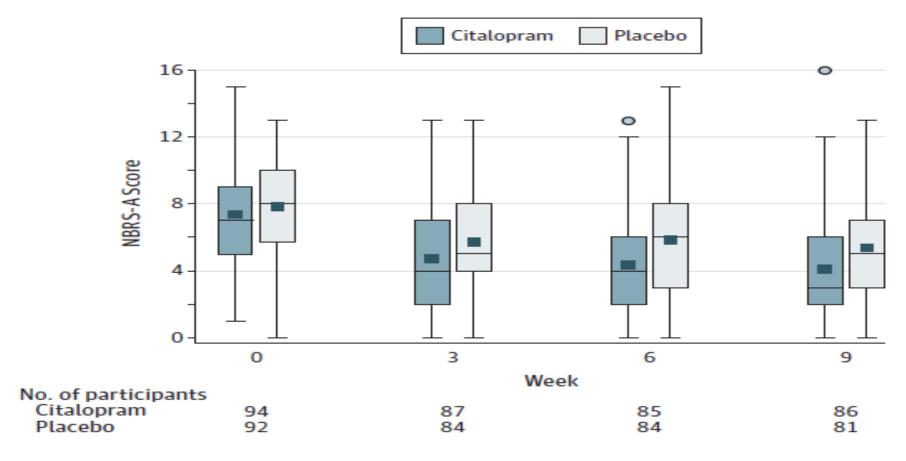
A Systematic Review of Randomized Controlled Trials Amer Jr of Alzheimer's Disease & Other Dementias® 2014, Vol. 29(7) 565-574

- No significant difference between Benzos
- Well tolerated only 5 randomised control trials
- Range from 1975 to 2002 Heterogeneous
- Limited evidence

BENZODIAZEPINES

	Half-life (hours)	Half-life of metabolite	Overall action time	Main Use
Midazolam	2-4	2	Ultrashort<6	Hypnotic anticonvulsant
Zolpidem	2		Ultrashort 4	Hypnotic
Loraz Oxaz Temaz	8-12		Short 12-18	Anxiolytic Hypnotic
Alprazolam	6-12	6	Medium 24	Anxiolytic
Nitrazepam	16-40		Medium	Hypnotic
Diazepam Chlordiazepoxide	20-40	60	Long 24-48	Anxiolytic Muscle relaxant
Clonazepam	50		long	Anticonvulsant
Flurazepam	1	60	long	

Antidepressants for treating depression in dementia Cochrane Library

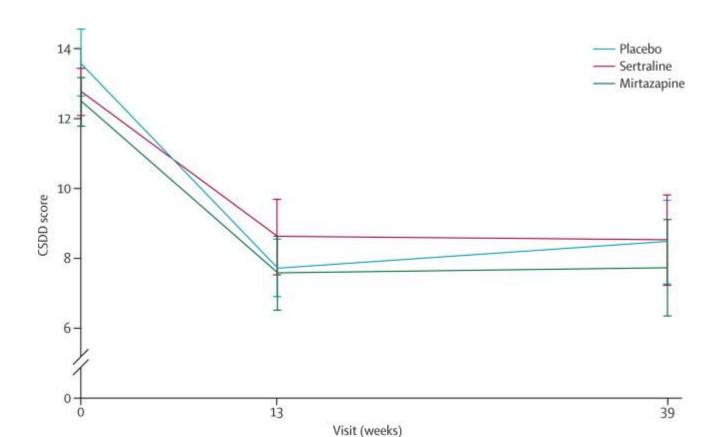

Number of responders at 6-12 weeks

	Antidepres	sant	Place	bo		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixed, 95% CI
1.4.1 SSRI								le l
Lyketsos 2003	11	24	4	20	23.3%	3.38 [0.87, 13.17]		+
Petracca 2001	8	17	8	24	34.7%	1.78 [0.50, 6.37]		
Subtotal (95% CI)		41		44	58.0%	2.42 [0.97, 6.09]		
Total events	19		12					
Heterogeneity: Chi ² = 0.4	6, df = 1 (P :	= 0.50);	$I^2 = 0\%$					
Test for overall effect: Z=	1.89 (P = 0	.06)						
1.4.2 venlafaxine								
de Vasconcelos 2007	8	14	11	17	42.0%	0.73 [0.17, 3.11]		-
Subtotal (95% CI)		14		17	42.0%	0.73 [0.17, 3.11]		
Total events	8		11					
Heterogeneity: Not applic	cable							
Test for overall effect: Z=	0.43 (P = 0	.67)						
Total (95% CI)		55		61	100.0%	1.71 [0.80, 3.67]		
Total events	27		23					
Heterogeneity: Chi ² = 2.3	30, df = 2 (P :	= 0.32):	I ² = 13%					
Test for overall effect: Z=		200					0.1	0.2 0.5 1 2 5 10
Test for subgroup differe	0.000,00	30000	f=1 (P=	0.17).	$l^2 = 46.99$	%		Favours placebo Favours antidepressants

Effects of Citalopram on Neuropsychiatric Symptoms in Alzheimer's Dementia: Evidence From the CitAD Study The American Journal of Psychiatry VII73,Is5,May 2016

Citalopram (n=86)	Placebo (n=83)	P-value
Delusions 22 (26)	35 (42)	0.04
Hallucinations 11 (13)	13 (16)	0.87
Agitation/Aggression 66 (77)	70 (84)	0.26
Depression / Dysphoria 24 (28)	30 (36)	0.24
Anxiety 36 (42)	54 (65)	0.01
Elation / Euphoria 3 (3)	5 (6)	0.28
Apathy / Indifference 41 (48)	42 (51)	0.83
Disinhibition 27 (31)	34 (41)	0.34
Irritability / Lability 49 (57	7) 61 (73)	0.01
Sleep / Nighttime Behavior 21 (24) 30 (36)	0.17
Appetite / Eating Disorder 22(26)	18(22)	0.56

CitAD RCT Citalopram & Agitation



40% Improvement on Citalopram group vs 26% PI

Porsteinsson et al. JAMA. 2014;311(7):682-691

HTA-SADD Trial Banerjee S, Lancet 2011

• Sertraline or Mirtazapine for depression in dementia (HTA-SADD): a randomised, multicentre, double-blind, placebo-controlled

Memantine for dementia Cochrane Systematic Review - Intervention

Version: 20 March 2019

- There was increased efficacy of Memantine (versus placebo) with increasing severity of disease, but this occurred alongside deterioration in the placebo
- for the mod-severe populations
- Clinical global rating
- Cognitive function
- Mood Behaviour

Comparison: 2 Memantine 20 mg or equivalent vs placebo in patients taking versus not taking cholinesterase inhibitors with moderate to severe Alzheimer's disease 24-to Outcome: 2 Cognitive Function subgroup analysis by +/- ChEl

Study or subgroup	Favours me N	mantine Mean(SD)	Placebo N	Mean(SD)	Std. Mean Difference IV,Fixed,95% CI	Weight	Std. Mean Difference IV,Fixed,95% CI
1 Monotherapy Reisberg 2003 (9605	5)(1) 96	4.5 (11.48)	83	10.2 (12.66)		5.3 %	-0.47 [-0.77, -0.17
Howard 2012 (DOMII	NO-AD) (2/87	1.89 (2.46)	25	4 (3.63)		1.7 %	-0.70 [-1.22, -0.18
Asada 2011a (IE350	1)(3) 193	0.65 (9.74)	175	5.18 (11.66)		11.0 %	-0.42 [-0.63, -0.22
van Dyck 2007 (MD-0	1)(4) 131	1.8 (12.59)	126	2.4 (13.47)		7.9 %	-0.05 [-0.29, 0.20
Forest 2006 (MD-22)	(5) 132	0 (0)	131	0 (0)			Not estimable
Homma 2007 (IE210	1)(6) 84	-0.39 (6.56)	87	3.71 (10.01)		5.1 %	-0.48 [-0.78, -0.18
Wang 2013 (7)	11	0 (7.2)	11	5.6 (5.9)		0.6 %	-0.82 [-1.70, 0.06
Peskind 2004 (MD-10) SG (8)101	0.84 (5.85)	114	2.24 (6.98)		6.5 %	-0.22 [-0.48, 0.05
Bakchine 2008 (996)	79) SG (9046	-0.9 (6.36)	65	0.68 (6.41)		5.5 %	-0.25 [-0.54, 0.05
Subtotal (95% CI)		(P = 0.11); I ² =4	817 11%		•	43.7 %	-0.33 [-0.43, -0.23
Heterogeneity: Chi² = 1 Test for overall effect: 2	Z = 6.24 (P <	0.00001)					
Heterogeneity: Chi ² = 1 Test for overall effect: 2 2 With concomitant cho Howard 2012 (DOMII	Z = 6.24 (P <		41	1.37 (3.51)		2.5 %	-0.26 [-0.70, 0.18
Test for overall effect: 2 2 With concomitant cho	Z = 6.24 (P < linesterase i VO-AD) (1 0 0	nhibitors	41 153	1.37 (3.51) 2.4 (9.15)		2.5 % 9.8 %	
Test for overall effect: 2 2 With concomitant che Howard 2012 (DOMII	Z = 6.24 (P < dinesterase i NO-AD) (1010 (11) 171	nhibitors 0.55 (2.67)					-0.37 [-0.59, -0.15
Test for overall effect: 2 2 With concomitant che Howard 2012 (DOMII Tariot 2004 (MD-02)	Z = 6.24 (P < clinesterase i NO-AD) (100 (11) 171 -50) (121/270	nhibitors 0.55 (2.67) -1 (9.15)	153	2.4 (9.15)		9.8 %	-0.37 [-0.59, -0.15 -0.26 [-0.43, -0.09
Test for overall effect: 2 2 With concomitant che Howard 2012 (DOMII Tariot 2004 (MD-02) Grossberg 2008 (MD	Z = 6.24 (P < clinesterase i NO-AD) (101) (11) 171 I-50) (121270	nhibitors 0.55 (2.67) -1 (9.15) -3.01 (11.52)	153 271	2.4 (9.15) 0 (11.54)		9.8 % 16.5 %	-0.37 [-0.59, -0.15 -0.26 [-0.43, -0.09 -0.10 [-0.27, 0.07
Test for overall effect: 2 With concomitant ch Howard 2012 (DOMI Tariot 2004 (MD-02) Grossberg 2008 (MD Nakamura 2016 (13)	Z = 6.24 (P < clinesterase i NO-AD) (100) (11) 171 -50) (12070 268 ID-12)S (133)	nhibitors 0.55 (2.67) -1 (9.15) -3.01 (11.52) 1.34 (8.23)	153 271 269	2.4 (9.15) 0 (11.54) 2.15 (8.08)		9.8 % 16.5 % 16.5 %	-0.37 [-0.59, -0.15 -0.26 [-0.43, -0.09 -0.10 [-0.27, 0.07 -0.19 [-0.44, 0.05
Test for overall effect: 2 2 With concomitant ch Howard 2012 (DOMI Tariot 2004 (MD-02) Grossberg 2008 (MD Nakamura 2016 (13) Porsteinsson 2008(M	Z = 6.24 (P < ininesterase i NO-AD) (100) (11) 171 -50) (12070 268 ID-12)S (1339) 50 932 .76. df = 5 (f	nhibitors 0.55 (2.67) -1 (9.15) -3.01 (11.52) 1.34 (8.23) 0.85 (5.95) 3.05 (7.57) P = 0.33): F = 15	153 271 269 123 63 920	2.4 (9.15) 0 (11.54) 2.15 (8.08) 1.99 (5.77)	+	9.8 % 16.5 % 16.5 % 7.8 %	-0.26 [-0.70, 0.18 -0.37 [-0.59, -0.15 -0.26 [-0.43, -0.09 -0.10 [-0.27, 0.07 -0.19 [-0.44, 0.05 -0.48 [-0.86, -0.10 -0.24 [-0.33, -0.14

- (1) 28wks, 20mg, no ChEI, SIB, OC, baseline difference: 65.9 and 68.3, mean MMSE (baseline) 7.9 (2) sMMSE; Memantine vs placebo arms; per protocol data; 30 weeks baseline 9.2 and 9.1, adjusted
- (3) Unpublished licensing data SIB-J OC, mean MMSE (baseline) 10.1 and 9.6
- (4) 24wks, 20mg, no ChEl permitted, SIB, OC, baseline difference: 77.2 and 75.6, mean MMSE (baseline) 10.2
- (5) No data reported on registry post
- (6) Unpublished poster data SIB-J; ChEI prohibited, mean MMSE (baseline) 10.1 and 10.4
- (7) SIB, large differences at baseline: 76.0 and 60.7, 24 weeks, no ChEI, mean MMSE (baseline) 14.1 and 10.1
- (8) From Winblad 2007 ADAS-Cog, mean MMSE not stated for subgroup, but overall 17.3 (for ~68% moderate) (9) From Winblad 2007 - ADAS-Cog; mean MMSE not stated for subgroup, but overall 18.7 (for 52% moderate)
- (10) sMMSE; per protocol data; 30 weeks baseline 9.1 and 9.0, adjusted
- (11) 24wks, 20mg, required to be on stable dose of done ozil, SIB, OC; baseline difference; 78.0 and 80.0, mean MMSE (baseline) 10.1
- (12) SIB; 28mg E/R; on stable ChEI, OC; data extracted from graph; baseline 76.8 and 75.2, mean MMSE (baseline) 11.5 and 11.1
- (13) SIB-I, LOCF, on stable ChEI; baseline: 77.2 and 76.8
- (14) From Winblad 2007: ADAS-Cog. on stable ChEI, mean MMSE not stated for subgroup, but overall 16.9 (for ~70% moderate) (15) ADAS-cog - Currently taking a ChEI; moderate subgroup; mean MMSE not stated for subgroup, but overall 20.8 (for ~35% moderate

Mood Stabilise

Carbamazepine

Lamotrigine

Topiramate

Valproate

Atypical antipsychotics

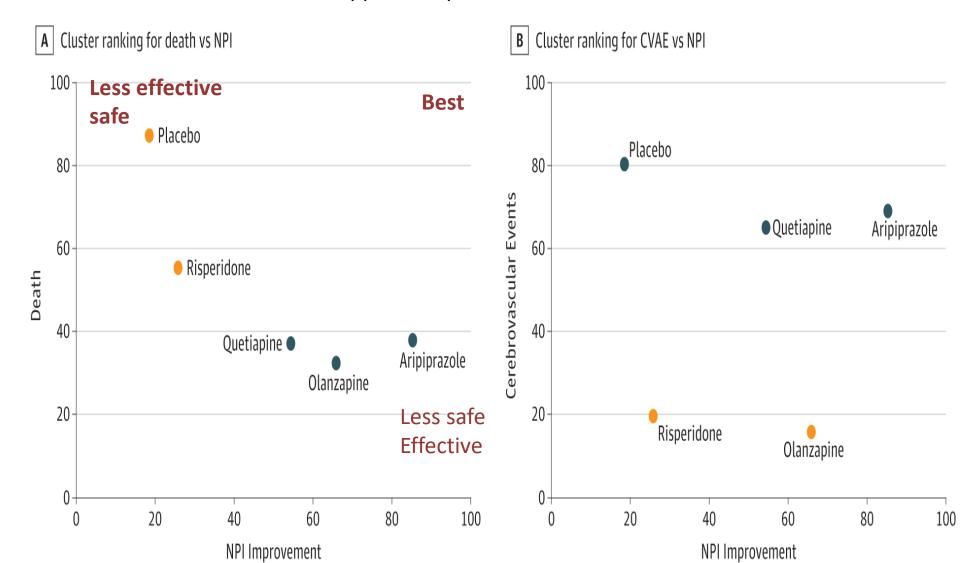
Antiepileptic Drugs for the Treatment of Agitation and Aggression in Dementia: Do They Have a Place in Therapy? D Gallagher, N Herrmann Drugs (2014) 74:1747–1755 NICE 2019

- Antiepileptic drugs (AEDs) have been the focus of considerable attention as potential alternatives
- Carbamazepine continues to have the best evidence to support its use
- There is now more consistent evidence that Valproate preparations should not be used for agitation and aggression in dementia.
- There are limited data for several newer AEDs that warrant further investigation

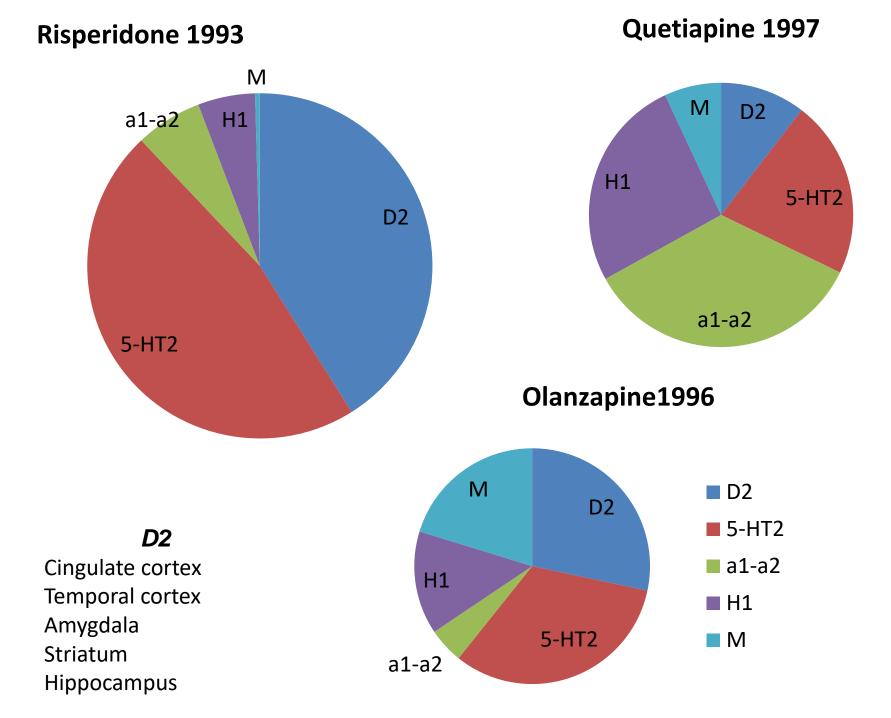
Assessment of Reported Comparative Effectiveness and Safety of Atypical

Antipsychotics in the Treatment of Behavioral

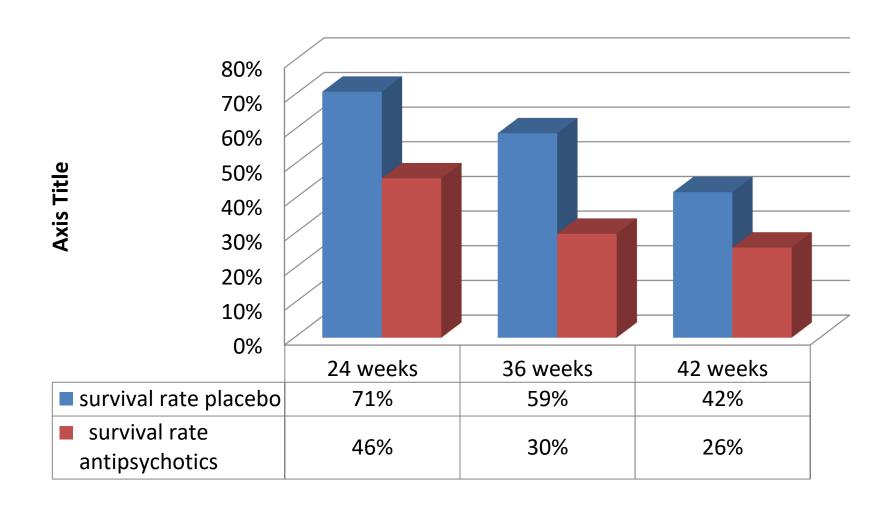
and Psychological Symptoms of Dementia


A Network Meta-analysis Yusuna et al. 2019 JAMA

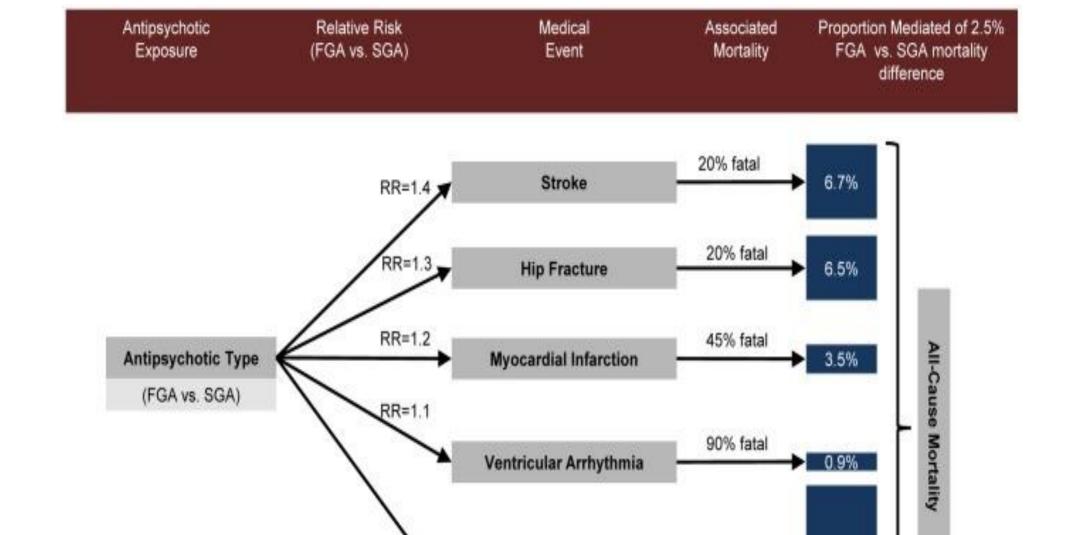
Meta-analysis of 17 randomized clinical trials nursing homes


- 5373 pts with AD and Agitation
- Mean age of 80.8 years, nearly 70% women mean duration of follow-up of 10 weeks.
- The medications: Aripiprazole, Olanzapine, Quetiapine and Risperidone

the most widely used atypical antipsychotics


Cluster Ranking Plot for Relative Effectiveness and Safety
The upper right quadrant represents the more effective and more safe treatments;
lower right quadrant, more effective but less safe lower left quadrant, less effective
and less safe; and upper left quadrant, less effective and more safe.

Reference	Intervention	Number of trials	Probability of stroke no antipsychotics	Probability of stroke with antipsychotics
Schneider et al 2006	Aripiprazole Olanzapine Quetiapine Risperidone	15	0.9%	1.9%
Dilip V Jeste et al 2007	Risperidone	3	0.7%	1.6%
Herman Lanctot 2005	Risperidone/ Olanzapine	11	0.8%	2.2%
Schneider et al 2005	Quetiapine	2	0.9%	1.9%


DART-AD 2009 Ballard Lancet Neurology

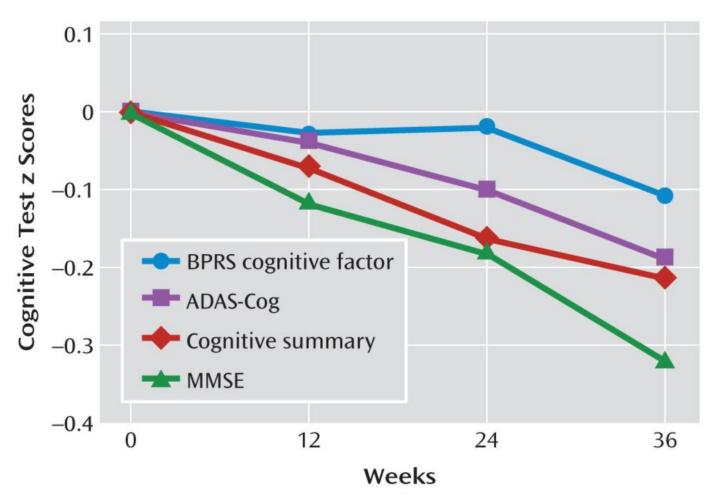
Antipsychotics, Other Psychotropics, and the Risk of Death in Patients With Dementia Number Needed to Harm

JAMA Psychiatry. 2015;72(5):438-445

- Haloperidol NNH 26
- Risperidone NNH 27
- Olanzapine NNH 40
- Quetiapine NNH 50

Unexplained Pathways

84%


Table 3. Adjusted Mortality Risk Differences in Death Rates
During the 180-Day Observation Period Between Medication Users
and Antidepressant Users^a

Medication	Risk Difference, % (95% CI)	NNH (95% CI)
Antidepressant	[Reference]	NA
Haloperidol	12.3 (8.6-16.0) ^b	8 (6-12)
Olanzapine	7.0 (4.2-9.8) ^b	14 (10-24)
Quetiapine	3.2 (1.6-4.9) ^b	31 (21-62)
Risperidone	6.1 (4.1-8.2) ^b	16 (12-25)
Valproic acid	5.1 (1.8-8.4) ^b	20 (12-56)

Abbreviations: NA, not applicable; NNH, number needed to harm.

^a Analyses in the 46 008 patients adjusted for calendar year of first dementia diagnosis, days from dementia diagnosis to date of index drug start, centered

Cognition and Antipsychotics

From: Cognitive Effects of Atypical Antipsychotic Medications in Patients With Alzheimer's Disease: Outcomes From CATIE-AD

Side-effect profile Antipsychotics

Metabolic Syndrome

Clozapine

Olanzapine

Quetiapine

Risperidone

QT interval

Thioridazine

Quetiapine

Chlorpromazine

Haloperidol

Risperidone

Olanzapine

Hypotension

Quetiapine

Risperidone

Olanzapine

Amilsupride

Seizures

Olanzapine

Quetiapine

Sedation

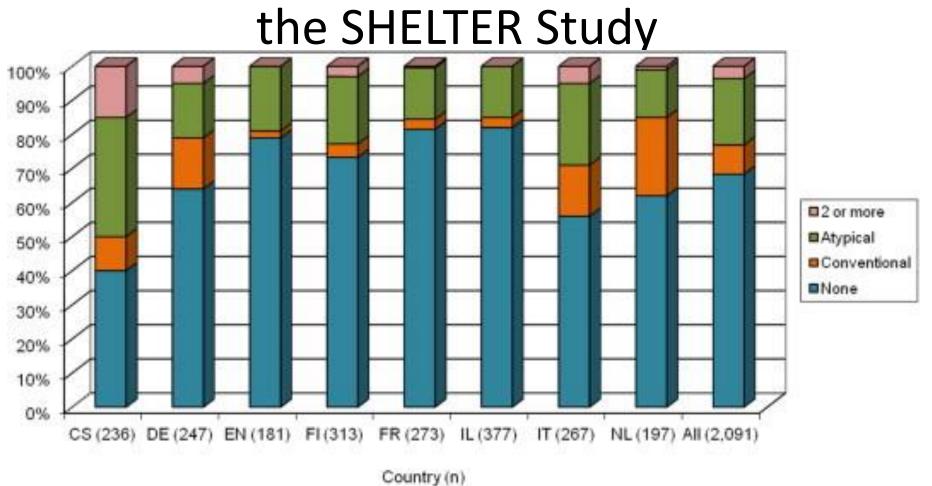
Amilsupride

Olanzapine

Risperidone

Quetiapine

Nausea Vomiting


Quetiapine

Risperidone

Amilsupride

	STEP	EFFICACY	TIME TO ONSET	TOLERABILITY	EASE OF USE	EFFICACY/ OTHER
RISPERIDONE	1					
QUETIAPINE	2					
ARIPIPRAZOLE	2					
CARBAMAZEPINE	3					
CITALOPRAM	4					
GABAPENTIN	5					
PRAZOSIN	6					

Use of Antipsychotic Drugs Among Residents With Dementia in European Long-Term Care Facilities: Results From

Best Standards Prescribing anti Psychotics

- Document target symptom: <u>Severe Aggression</u>
- Prescription should be reviewed before D/C
- Plan to review soon after D/C
- Communicate/ consent with family
- Falls prevention/avoidance
- Underlying causes are considered before, Pain

Mental Health Restraint and Seclusion Toolkit Fact Sheet 4

Comfort Plan for Wellness and Recovery

Aspects of a Comfort Plan

Comfort plans may be known by other names, such as 'personal prevention plans' or 'safety plans'. Regardless of the title, they all contain a minimum of three similar components;

- 1. triggers to the persons anxiety or distress,
- 2. the behaviours a person might exhibit when they are anxious or distressed and
- 3. strategies they find calming or soothing.

Tele-consult

- Mrs Smith, Mark's wife:
- Interventions:
- Concerning symptoms:

A

D

Ну

Hy

HTN

DMII

Past IHD

TKR

Insomnia

Ex smoker

Retired

Plummer

Average

alcohol

What are we treating?Who are we treating?

PHARMACOLOGICAL INTERVENTIONS

Time for Change?

- Stop
- Start
- Reduce

										L				
						Λ	c	٠,	\neg	li	1	r	i	n
						_	7		J	П	٦		ı	П

- Metformin 1gr BD
- Gliclazide SR 90mg
- Atenolol 50 mg
- Perindopril 10 mg
- Simvastatin 40 mgs
- Endep 50 mgs
- Temazepam 20 mg nocte
- Panadol 1gr QDS

Hospitalisation?

Drugs?

Wishes

• Risk / Safety

Choices

Support

Physical

Psychological

Differential:

Delirium?

Comfort Plan

1. History In the past, have you experienced any of the following? ☐ Feeling unsafe ☐ History of trauma/traumatic events ☐ Feeling suicidal/suicide attempts ☐ Being in Prison ☐ Restraint or seclusion ☐ Self-Harming behaviours ☐ Aggressive behaviour ☐ Depression/ Sadness
■ Anxiousness
Would you like to say more about these issues?

□ Aggressive behaviour□ Depression/ Sadness□ Anxiousness
Would you like to say more about these issues?
5. Staff Preference
nthe case when it is possible
vould you rather staff be
Male Male
Female
No preference

	y Triggers		Early Warning Signs
	e past, what do you think has		you find any of the
mac	le you feel angry or upset?		owing warning signs
	Not being listened too	_	evant to you?
	Feeling lonely	ш	Changes in sleep
	Name calling		(more/less)
	People yelling at me		Clenching fists/teeth
	Arguments		Yelling/Swearing Being Rude/Abusive
	Missing out on important		•
_	events		Hurting myself Pacing
	Feeling bored		•
		_	Wanting to hit or throw objects
	Bedroom door open		Slamming doors
	Personal space invaded		Feeling irritable or angry
	Particular smells		Hearing voices/visual
	Being tired	_	changes
	Being physically unwell		Talking to myself/the voices
	Feeling disrespected		Changes in thinking/racing
	Not being able to smoke		thoughts
	Being hungry/thirsty		Worrying a lot/thinking too
	Being touched		much
	A particular time of day/night		Unable to sit still
	Hanging out for drugs		Heart racing/Dry mouth
	Hearing voices or experiencing		Withdrawing/isolating myself
_	bad thoughts		Not taking care of myself
	Feeling depressed		Changes in eating
	Feeling depressed Feeling intimidated		(more/less)
	<u> </u>		Avoiding people
	People in uniform/staff	Woi	uld you like to say more about
	Being told what to do	thes	*
	Contact with particular people,	trioc	4. Top 3 Coping Strategie
	if so who?		
	d you like to say more about these		1
trigge	ers?		2.
		-	-

COMFORT PLAN FOR WELLNESS AND RECOVERY

4. C	oping Strategies
Wha	at are some of the things that calm you
dow	n or keep you safe?
	Talk with consumers/staff
	Sitting quietly in a room/dark room
	Breathe deeply/relaxation exercises / CD
	Particular medication, if so what?
	Listening to music
	Watching TV / DVD
	Calling friends or family
	Games/Computer/Wii
	Playing board games/cards
	Being outside
	Playing a musical instrument
	Using rubber band on wrist
	Running cold/hot water on hands
	Singing
	Using/sitting on exercise ball
	Chewing gum/ Sour Iollies
	Contact with family and friends
	Going for a walk
	Having a bath/shower
	Exercise/ballsports
	Artwork/craft activities
	Having food/drink
	Reading and or writing
	Using stress ball
	Shredding paper
	Wrapped in blanket/tucked in
	Using NRT options
	Guided relaxation
	Incense nice smells/hand lotion
Woul	d you like to say more about these strategies?

1 Short attention span, easy distractibility, inability to concentrate. Disinhibition

2 Impulsive, impatient, low tolerance for pain or frustration.

3 Uncooperative, resistant to care, demanding.

4 Violent and or threatening violence toward people or propert

5 Explosive and/or unpredictable anger.

6 Rocking, rubbing, moaning or other self-stimulating behavid

7 Pulling at tubes, restraints, etc.

8 Wandering from treatment areas.

9 Restlessness, pacing, excessive movement.

10 Repetitive behaviours, motor and/or verbal.

11 Rapid, loud or excessive talking.

12 Sudden changes of mood.

13 Easily initiated or excessive crying and/or laughter.

14 Self-abusiveness, physical and/or verbal.

Sub Totals

Aggression

Disinhibition score

Lability score

In Summary

- Psycho-social interventions
- Pharmacological Interventions
- Communicate Risks and Benefits

Hypersexuality in Dementia

Geriatrics and Gerontology Int. v18n2Feb 2018

- Cyproterone acetate as a treatment for moderate-to-severe inappropriate sexual behavior in dementia by Min Ju Kang, Jeewon Suh, SangYun Kim 9pts AD 7 improved
- Review:Treatment of Inappropriate Sexual Behavior in Dementia R, 2016 De Giorgi,

Costs of drugs

• Abilify Aripiprazole 10mg Tablets 30

\$77.99 PBS 40.00

- RISPERIDONE 6.20 PBS
- Rexulti Brexpiprazole 2 mg US\$ 130
- Quetiapine 25mg

\$9.50 PBS 6.20

Olanzapine 5 mg

\$ 9.50 PBS 6.20

• **Pimavanserin 34** mg US \$ 126.00

ALTERNATIVES PARTIAL AGONISTS

ARIPIPRAZQLE 2002

Serotonin
Major
Depression

Bipolar I II
Mania

Dopamine

Partial Agonist D2

In combination for Schizophrenia

Aripiprazole for the Treatment of Psychosis in Patients With Alzheimer's Disease: A Randomized, Placebo-Controlled Study Journal of Clinical Psychopharmacology: Oct 2005.Vol25 - Is5 - p 463-467

Current studies on pharmacological treatment of agitation and psychosis in dementia with repositioned drugs available at: ClinicalTrials.gov

2020-2021

- Dextromethorphan/quinidine ongoing
- Brexpripazole OD 1-2-3 mg ongoing
- Prazosin BD 1-4 mg ongoing
- Mirtazapine SYMBAD 15-45 mg ongoing
- Lithium 150-450-600mg
- Escitalopram 5-15 target is 15 mg on going
- Nabilone on going

Randomized Placebo-Controlled Trial of Nabilone for Agitation in Alzheimer's Disease

Herrmann N American Journal of Geriatric Psychiatry, 2019, Vol 27, Is 11, Pg 1161-1173,

Nabilone was shown to improve agitation, overall behavior, and caregiver distress compared to placebo.

While sedation was greater in Nabilone treatment group, there were no between-group differences in treatment-limiting sedation

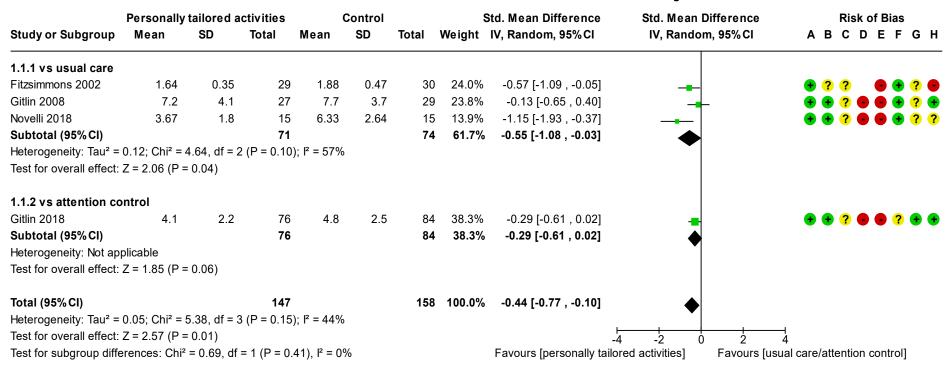
Efficacy and Safety of Brexpiprazole for the Treatment of Agitation in Alzheimer's Dementia Two 12-Week, Randomized, Double-Blind, Placebo-Controlled Trials

- In Study 1, brexpiprazole 2 mg/day demonstrated statistically significantly greater improvement in CMAI Total score from baseline to Week 12 than placebo (adjusted mean difference, −3.77; confidence limits, −7.38, −0.17; t (316) = −2.06; p = 0.040;
- In Study 2, brexpiprazole 0.5–2 mg/day did not achieve statistical superiority over placebo (-2.34; -5.49, 0.82; t (230) = -1.46; p = 0.15;

BREXPIPRAZQLE

- Partial agonist 5-HT_{1A} D₂ D₃
- Antagonist 5-HT2A 2B 7 NA α_{1B} α_{2c}

BRX


BRX

- Moderate affinity H1
- Low sedation incidence < 3mg Weak M1

- Schizophrenia
- Major Depression
- Pharmacokinetics: CYP2D6 metabolites 8% Caucasian 3-8 Afro Americans
- Renal secretion < eGFR 30 half dose

Personally tailored activities for improving psychosocial outcomes for people with dementia in community aug2019

Risk of bias legend

- (A) Random sequence generation (selection bias)
- (B) Allocation concealment (selection bias)
- (C) Blinding of participants and personnel (performance bias)
- (D) Blinding of outcome assessment (detection bias): Subjective outcomes (participant-rated)
- (E) Blinding of outcome assessment (detection bias): Subjective outcomes (proxy-rated)
- (F) Incomplete outcome data (attrition bias)
- (G) Selective reporting (reporting bias)
- (H) Other bias

Non Pharmacological

Caregivers

- Knowledge to understand dementia process
- Focus on remaining abilities of the person
- To engage with meaningful activities
- To maintain their wellbeing
- Resilience building up
- Burden of care
- Distress caused by any BPSD of the person

Resilience is where we experience adversity and find new ways of coping to reduce the negative impact on ourselves and our lives.

- "Meaning making
- "A sense of mastery and control
- "Connectedness to self and others
 - Resources
 - My actions

How to get to a person's world with dementia

Interaction change

Not to criticise

To stay calm

To change strategy to allow different activities

SUNDOWNING MANAGEMENT

- Light and Noise
- AChol deficiency/sleep regulation
- Melatonin Ramelteon
- Antipsychotics no evidence
- Benzos might worsen symptoms
- Bright light therapy effective

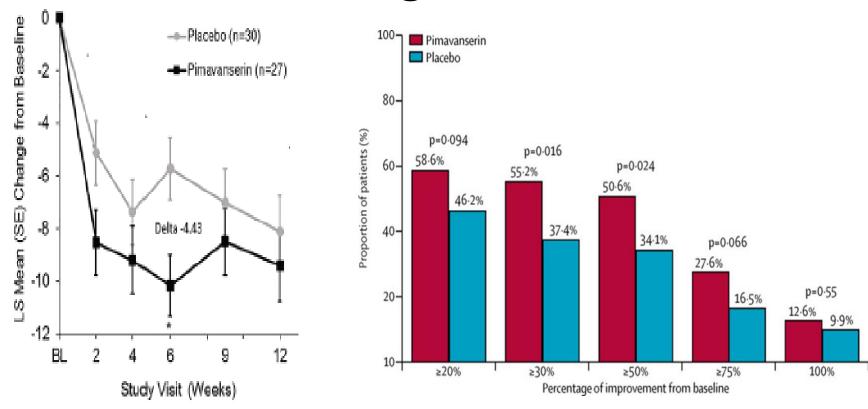
• Suvorexant A_{0.20}
0.15
8 0.06
9 0.04
0.05
0.05

Base Interv

Control

Base Interv

Active

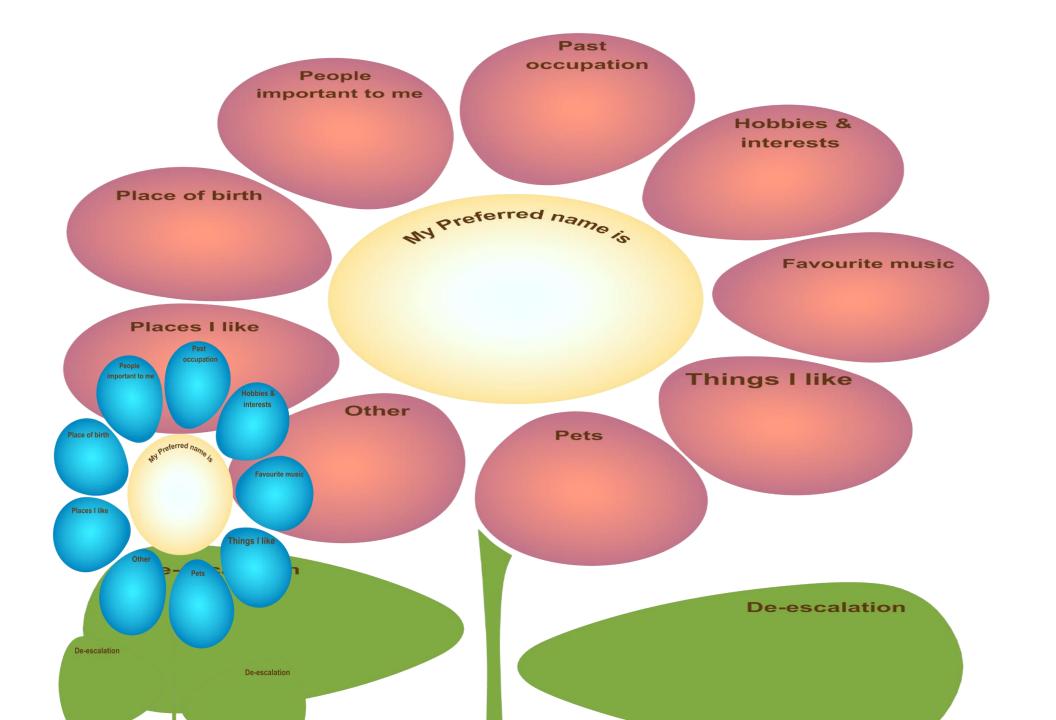


Effects of a Tailored Lighting Intervention on Sleep Quality,
Rest–Activity, Mood, and Behavior in Older Adults With
Alzheimer Disease and Related Dementias: A Randomized
Clinical Trial Journal of Clinical Sleep Medicine, Dec 2019 Vol. 15, No. 12

Control

Active

Pimavanserin, a Serotonin2A Receptor Inverse Agonist

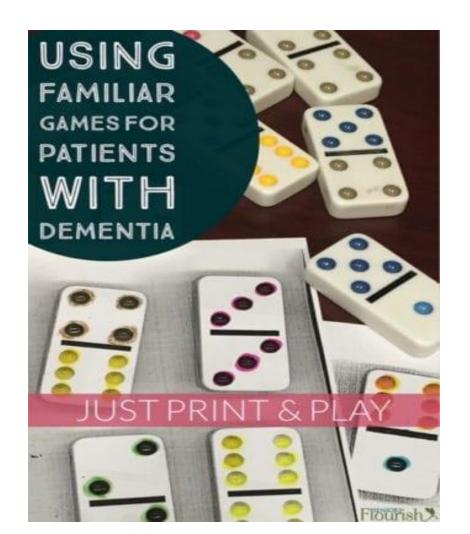

The HARMONY trial Week six Pimavanserin group reduction of NPI-NH -10.15 VS -5.72 Placebo

Non Pharmacological interventions and tech

- Olfactory Tactile Visual stimulation
- To engage and benefit from these interventi
- Quiet settings
- Residents preferences abilities and background

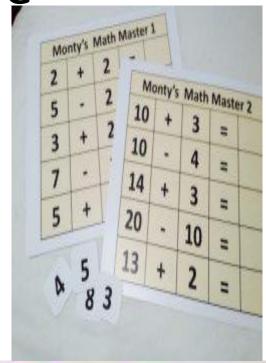
ups

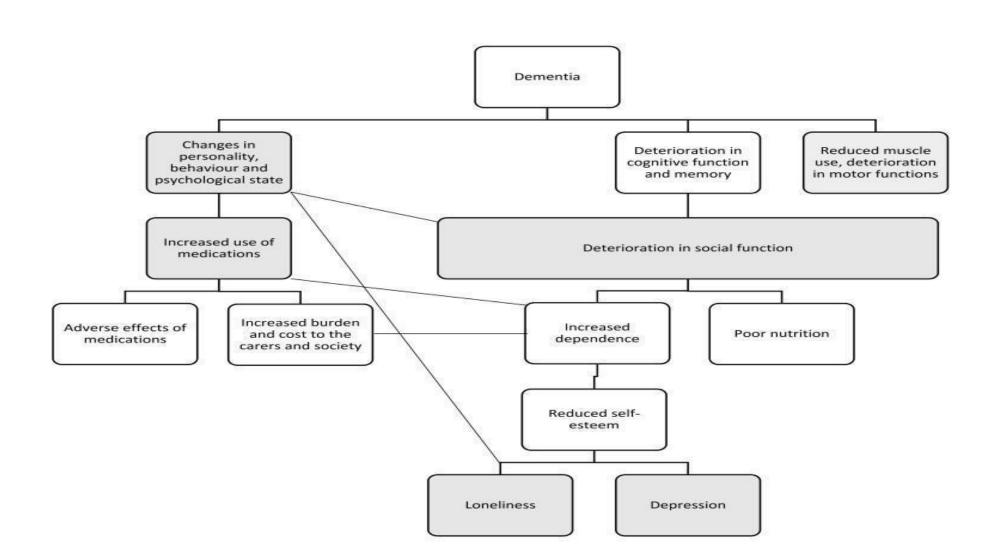
TACTILE WALLS

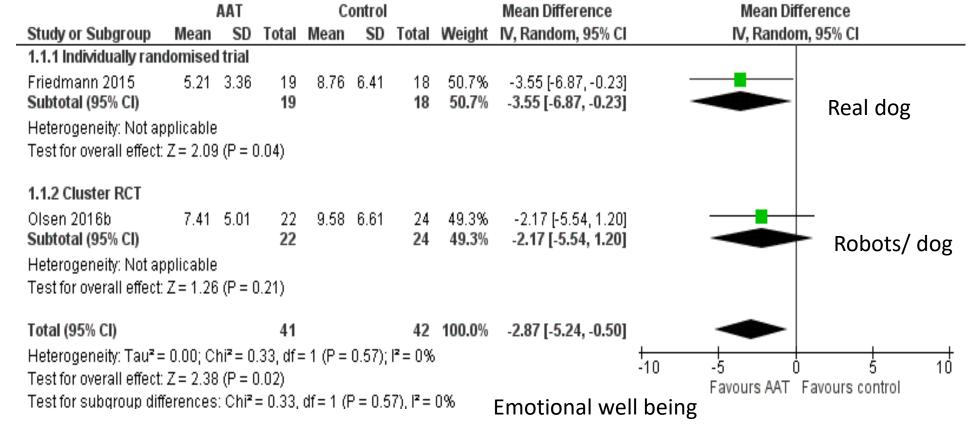


Structured supported daily activities

QWIRKLE


Tactile, simple motor activities animal representation


The sensory store


- Boxndice.com.au
- Ilcaustralia.org.au
- Wisdomactivities.com.au
- Diversionaltherapy.org.au
- Dementiashop.com.au

Animal-assisted therapy for dementia Cochrane Systematic Review 25 Nov 2019

"**Simulated family presence**", consisting of a professionally edited tape recording of a semi-structured interview of a family member, conducted by a trained psychologist, regarding participants' earlier lives. The script was designed to resemble a telephone conversation regarding special memories, beloved family members, and family episodes.

 We found low-certainty evidence that AAT may slightly reduce depressive symptoms in people with

dementia.

 No side-effects to the animals

- Robotic animals
- Soft toys cats
- 8 studies Real Dogs
- One study Horse
- No studies assessed outcomes on BPSD
- Companionship +pleasure+ relaxation +motivation

patterns of older people with dementia, as measured by wearable technology: A cluster randomised controlled trial

2016 w Moyle W. Jones C. Jenny Murfield Lukman Thalib Elizabeth BeattieDavid Shuma Siobhan O'Dwyera M. Cindy Mervina,h, Brian

Draperi

After 10 weeks, the PARO group showed a greater reduction in daytime step count than usual care (p=0.023), and in night time step count (p=0.028) and daytime physical activity (p=0.026) compared with the plush toy group.

At post-intervention, The PARO group also had a greater reduction in night time physical activity than the usual-care group (p=0.015).

Conclusions: PARO may have some effect on motor activity of older people with dementia in long-term care

BRAIN GAMING EFFECTS ON MILD COGNITIVE IMPAIRMENT AND DEMENTIA:

A Collaborative Systematic Review and Meta-Analysis from the American Congress of Rehabilitation Medicine Applied Cognition Geriatric Taskforce (ACGTF):
Pallavi Sood, PhD, Sandra Kletzel, PhD, Ahmed Negm, MD, Shilpa Krishnan, PhD, Xiaolei Hu, MD, Patricia Heyn, PhD, FGSA, FACRM. Hannes Devos, PhD,

BACKGROUND

- Mild Cognitive Impairment (MCI) is a transitional state between cognitive changes due to normal aging process and dementia.
- ☐ There are ~ 35.6 million people with dementia in the USA; this number is expected to double every 20 years .
- ☐ Electronic brain gaming, a form of cognitive training, is typically developed or adapted from standard tasks and is engineered in such a way to provide fun cognitively challenging and adaptive tasks that are likely to enhance the user's engagement and motivation. Effectiveness of brain gaming is elusive among older adults with MCI or dementia.

REVIEW AIM

Systematically evaluate the literature on the effects of brain gaming interventions on cognitive outcomes in older adults with MCI or dementia

METHODS

This systematic review protocol is registered on PROSPERO (CCRD42015023918)

MESH and Main Key Words: computer/brain/ gaming/ electronic/ MCI/older adult/ dementia/cognitive function

Main Databases: Medline (Ovid), PubMed (NLM), Embase (Embase.com), PsycINFO (Ovid) and Cochrane library (Wiley).

Inclusion Criteria

- older adults (≥65)
 - Evidence of mild cognitive impairment or dementia of Alzheimer's (AD) type
- Brain gaming Tx
- Assess cognitive outcomes randomized controlled trials (RCT) or non-randomized multi-group design with an experimental (brain gaming) and comparator group.

Common reasons for **exclusion**: Review articles, healthy aging, not AD related cognitive impairment, cognitive training other than brain gaming.

PRISMA Chart: A priori protocol was developed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).

Identification

Records identified through main database searches (n=766), other data bases (n=95) hand search (n=17) and with duplicates (n=200) removed TOTAL n=678

Screening

Abstracts screened n=678

Full text articles screened n=172

Eligible

Data abstraction of Full text articles n=16

RESULTS

Table 1: Included Studies Characteristics

Exp: experimental; BG: brain gaming; NA: not applicable; NR: not reported in the eligible manuscript

^subgroup analyses from the primary ACTIVE study (Ball, 2002)

AUTHOR, YEAR	BRAIN GAMING PRODUCT	RCT	SAMPLE SIZE		MALE	SAMPLE AGE	CONTROL	SESS	ION	DURATION	TIME	TREND
			Ехр	Con	%	mean (SD) *BG group only	TYPE	min	week	(wks)	(hrs)	(between group unless specified)
Barnes, 2009	Posit Science	Υ	22	25	60%	NR	Active	100	5	6	50	+
Basak, 2008	Rise of Nations	Υ	19	20	26%	70 (5)*	Passive	90	1.5	4-5	23.5	+
Finn, 2011	Lumosity	Y	12	13	36%	69 (8)*	Passive	NR	30	11.43	10	+
Gooding, 2016	Posit Science Brain Fitness	Υ	31	23	58%	76 (9)	Active	60	2	16	32	+
Hughes, 2014	Nintendo Wii	Υ	10	10	30%	77 (6)	Active	90	1	24	36	Neutral
Hyer, 2016	Cogmed	Υ	34	34	47%	75 (7)*	Active	40	5	5-7	16.6	+
Lin, 2016	Posit Science INSIGHT	Y	10	11	52%	73 (8)*	Active	60	4	6	24	+
Miller, 2013	Dakim's Brain Fitness	Υ	38	36	32%	82 (4)*	Passive	20-25	5	8	16.6	+
Park, 2018	Nintendo Wii	Υ	39	39	53.8%	67 (4.5)	Active	3	1	10	0.5	+
Styliadis, 2015	Posit Science Brain Fitness	Υ	14	28	31%	71 (6)	Both	60	3-5	8	32	Neutral (w/in)
Savulich, 2017	Game Show	Υ	21	21	60%	75 (7.4)	Passive	60	8	4	32	+
Valdes, 2012 ^	Posit Science Double Decision	Υ	885	110	35%	78 (6)	Passive	60	2	5	10	+
Cavallo, 2016	Brainer1	Υ	40	40	36%	77 (3)*	Active	30	3	12	18	+
Lee, 2013	In house	Υ	7	6	23%	78 (6)	Active	30	2	6	6	Neutral
Man, 2011	In house	Υ	20	14	15%	80 (1)*	NA	30	3-4	4-5	5	+
Galante, 2007	neuropsychological training	Υ	7	5	NR	76 (6)	Active	60	3	4	12	Neutral

Table 2: Effect of brain gaming on overall cognitive functions in mild cognitive impairment and dementia.

	Brain	Gaming	1	Co	introl			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Basak 2008	7.66	9.81	19	6.53	7.77	20	7.4%	0.13 [-0.50, 0.75]	-
Cavallo 2016	22.51	1.43	40	22.89	1.26	40	8.6%	-0.28 [-0.72, 0.16]	
Finn 2011	35.31	35.16	8	64.44	58.23	8	5.2%	-0.57 [-1.58, 0.43]	
Galante 2007	23	3.9	7	24.9	2.8	4	4.1%	-0.49 [-1.74, 0.77]	
Hagovgsk 2017	85.63	8.22	30	80.52	7.3	30	8.1%	0.65 [0.13, 1.17]	-
Hyer 2016	118.92	43.49	34	112.57	39.74	34	8.4%	0.15 [-0.33, 0.63]	+
Lee 2013	19.67	5.2	7	17.29	3.15	6	4.7%	0.50 [-0.61, 1.62]	
Lin 2016	32.06	36.16	10	43.77	60.82	11	6.0%	-0.22 [-1.08, 0.64]	
Man 2011	41.1	6.01	20	42.42	3.87	14	7.1%	-0.25 [-0.93, 0.44]	-+-
Miller 2013	46.5	37.15	38	46.31	37.41	36	8.5%	0.01 [-0.45, 0.46]	+
Park 2017	64.56	50.77	39	67.62	51.87	39	8.6%	-0.06 [-0.50, 0.38]	+
Savulich 2017	27.4	1.5	21	26.1	2.4	21	7.5%	0.64 [0.02, 1.26]	-
Styliadis 2015	25.42	2.35	14	27.28	1.97	14	6.5%	-0.83 [-1.61, -0.06]	
Valdes 2012	-822.98	279.44	85	-1,162.12	334.09	110	9.4%	1.08 [0.78, 1.39]	+
Total (95% CI)			372			387	100.0%	0.08 [-0.24, 0.41]	•
Heterogeneity, Tau2:	= 0.27; Chi ²	= 56.35	. df =	13 (P < 0.00	001); 2	77%			-, -, -, -, -, -, -, -, -, -, -, -, -, -
Test for overall effect									-4 -2 0 2 Favours [Control] Favours [Brain Gamin

Table 3: Effect of brain gaming on overall cognitive functions in mild cognitive impairment and dementia subgroup analysis

	Brain Gaming			Co	Control			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.1.1 Dementia									
avallo 2016	22.51	1.43	40	22.89	1.26	40	9.0%	-0.28 [-0.72, 0.16]	-
ee 2013	19.67	5.2	7	17.29	3.15	6	4.9%	0.50 [-0.61, 1.62]	
fan 2011 Subtotal (95% CI)	41.1	6.01	20 67	42.42	3.87	14 60	7.4% 21.2%	-0.25 [-0.93, 0.44] -0.19 [-0.54, 0.16]	•
leterogeneity. Tau ²	0.00: Chi	= 1.67.	df = 2	P = 0.431	2 = 0%				
est for overall effect	Z = 1.07	(P = 0.28	1						
1.1.2 MCI									
lasak 2008	7.66	9.81	19	6.53	7.77	20	7.7%	0.13 [-0.50, 0.75]	
inn 2011	35.31	35.16	8	64.44	58.23	8	5.4%	-0.57 (-1.58, 0.43)	
łagovosk 2017	85.63	8.22	30	80.52	7.3	30	8.5%	0.65 [0.13, 1.17]	-
Ner 2016	118.92	43.49	34	112.57	39.74	34	8.8%	0.15 [-0.33, 0.63]	+-
in 2016	32.06	36.16	10	43.77	60.82	11	6.3%	-0.22 [-1.08, 0.64]	
filler 2013	46.5	37.15	38	46.31	37.41	36	8.9%	0.01 [-0.45, 0.46]	+
ark 2018	64.56	50.77	39	67.62	51.87	39	9.0%	-0.06 [-0.50, 0.38]	-
avulich 2017	27.4	1.5	21	26.1	2.4	21	7.8%	0.64 [0.02, 1.26]	-
tyliadis 2015	25.42	2.35	14	27.28	1.97	14	6.8%	-0.83 [-1.61, -0.06]	
aldes 2012 ubtotal (95% CI)	-822.98	279.44	85 298	-1,162.12	334.09	110 323	9.8% 78.8%	1.08 [0.78, 1.39] 0.16 [-0.23, 0.54]	•
leterogeneity. Tau2 :	0.29; Chi	$^{2} = 44.98$	df = 5	(P < 0.000	101); 2 =	80%			
est for overall effect	Z = 0.81	(P = 0.42)	1						
Total (95% CI)			365			383	100.0%	0.11 [-0.23, 0.44]	•
leterogeneity. Tau2 :	0.28; Chi	$^{2} = 54.94$	df = :	2 (P < 0.00	1001); 12	- 78%		\rightarrow	
est for overall effect								-4	Favours [Control] Favours [Brain Gaming

CONCLUSION

- Current evidence shows brain gaming is not any more effective than control interventions in improving cognitive functions among adults with mild cognitive impairment (MCI) or dementia.
- However, there is a clear need for rigorous RCTs that are designed to detect clinically relevant changes in cognitive function outcomes
- Additional evaluation on different brain games technologies, prescriptions and participant adherence is needed in future research.

ADDITIONAL RESOURCES

Reference: Kletzel et al "Brain Gaming: A User's Product Guide for the Clinician." Archives of Physical Medicine and Rehabilitation 97(8), 2016:

Sood et al., Nonimmersive Brain Gaming for Older Adults With Cognitive Impairment: A Scoping Review. The Gerontologist.

Tovertafel Original

Interactive games for people with a cognitive impairment that connects people and stimulates movement

Relax in the here and now with dancing lights, beautiful colours and soothing sounds

2 2 3 Cognitive Social Physical

The game uses high-contrast projections

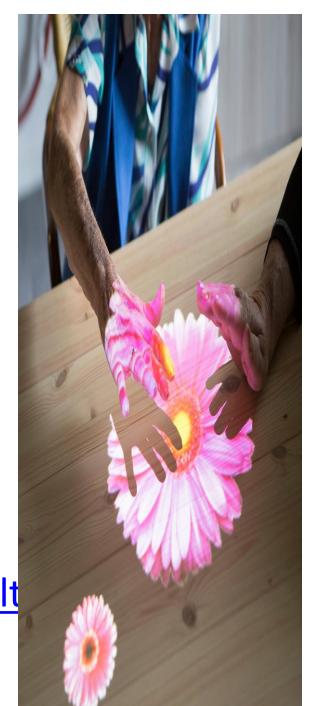
Projections are always spread across the table

Projected images naturally inspire movement or touch

The game gives sufficient reaction times

The game reacts to minimal and/or slow movements
Projections slow down as soon as they are within reach

The game only gives positive feedback


TOVERTAFEL

- www.alldoenunder.com
- www.justamemoryaustralia.com/ our-story
- www.australianmade.com.au
- www.aso.gov.au/titles/ads
- www.australia.com
- www.imagesaustralia.com
- www.museumvictoria.com.au
- www.thesprucecrafts.com/

free-printable-coloring-pages-for-adult

www.rahs.org.au

